講演者: Alexei Heintz 氏 (Chalmers University ,Sweden)
題 名: Willmore geometric flow by a kinetic approach
日 時: 2003年 11月 7日(金) 18:00〜
場 所: 早稲田大学 14号館 8階 807号室
アブストラクト:
Wilmore flow is gradient flow of surfaces evolving so they tend to
minimise
the Willmore functional. $W=\int H^2 dS $ where $H$ is the mean curvature
of
the evolving surface and $dS$ is the surface area measure. The functional
$W$
describes bending energy of an elastic membrane. The functional $W$
was a subject
of great interest in geometry and has applications in biophysics of
lipid membranes.
The velocity of the surface in Willmore flow is proportional to $\Delta
H +2H(H^2-K)$
where $K$ is the Gauss curvature and $\Delta$ is the Laplace-Beltrami
operator on the
surface that is a genuine nonlinear PDE of the forth order for the
position of the surface.
We intoduce an approach to the Willmore flow and a family of other geometric
flows
based on considering sharp fronts in solutions to kinetic equations
for an artificial
gas of particles with chemical reactions. It implies a simple convolution-thresholding
dynamics that by chosing apropriate parameters lets to approximate
a family of geometric
flows including generalised curvature flows and the Willmore flow.
The mathematical
background and the numerical illustrations with applications of this
approach will be presented.
このセミナーのあと懇親会を行ないたいと思いますので、奮って御参加ください。
(懇親会のみのご参加も大歓迎です。)
講演者を募集しています。御希望の方は、下記までご連絡下さい。
世話人
谷山 公規
石井 仁司
大野 修一
澤田 賢
柴田 良弘
鈴木 晋一
羽鳥 理
広中 由美子
注:14号館は西早稲田(本部)キャンパスにあります。
地図